刘 超: liu.chao@cqu.edu.cn
研究方向:大数据与软件智能、人工智能、自然语言处理
联系地址:重庆大学虎溪校区信息大楼B802室
刘超,博士,重庆大学大数据与软件学院副教授,硕士生导师;信息物理社会可信计算教育部重点实验室,大数据智能研究所骨干;中国计算机学会高级会员、软件工程专委会执行委员;主要从事大数据智能、智能软件工程、软件解析等方面的研究,近年来主要研究大规模代码搜索、代码大模型、代码解析、软件复用、软件可视化等;发表学术论文30余篇,包括领域顶级期刊/会议(CSUR, TOSEM, TSC, JOS, ICSE, FSE, ISSTA)以及领域权威期刊/会议(IST, JSS, ICPC, SANER, COMPSAC, InternetWare, JOV)。
教学课程
本科课程:《操作系统》
研究生课程:《智能软件工程》
学习/工作经历
2021-至今 重庆大学,大数据与软件学院,教师
2019-2021 浙江大学,计算机科学与技术学院,博士后
2019-2021 鹏城实验室,分布式高性能软件院士工作室,助理研究员
2019-2020 阿里巴巴,研发效能事业部,访问学者
2018-2019 上海百度,工程效率部,访问学者
2007-2018 重庆大学,大数据与软件学院,学士/硕士/博士
主持/参与科研项目
国家自然科学基金青年基金,面向大规模代码搜索的复杂语义映射模型研究
重庆市人工智能重大专项项目子课题, 多模态生成大模型关键技术研发及应用
重庆市技术创新与应用发展专项重点项目, 价值流驱动的软件研发效能提升智能服务平台研发与应用
中国博士后科学基金面上资助,基于层次化语义融合的深度代码搜索方法研究
重庆市博士后出站来渝资助,数据驱动的智能代码推荐技术
国家重点研发计划子课题,基于代码大数据的程序语义学习与现场大数据生成技术
企事业单位委托科技项目(阿里),代码推荐技术
国家863项目子课题,三峡库区城市水环境项目的知识管理与成果扩散
研究论文
JOS'25. Adaptive Knowledge Distillation for Lightweight Large Code Model
FSE'25. CoSEFA: An LLM-Based Programming Assistant for Secure Code Generation via Supervised Co-Decoding
FSE'25. Zero-Shot Cross-Domain Code Search without Fine-Tuning
Arxiv'25. AdaCoder: An Adaptive Planning and Multi-Agent Framework for Function-Level Code Generation
ESWA'25. An empirical study of ChatGPT-related projects and their issues on GitHub
FSE'24. An Empirical Study of Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions
ISSTA'24. CoSec: On-the-Fly Security Hardening of Code LLMs via Supervised Co-Decoding
InternetWare'24. VisRepo: A Visual Retrieval Tool for Large-Scale Open-Source Projects
Arxiv'24. Fixing code generation errors for large language models
JSS'24. End-to-end log statement generation at block-level
JOV'24. SFLVis: visual analysis of software fault localization.
JSS'24. Query-oriented two-stage attention-based model for code search.
SANER'24. Guiding ChatGPT for Better Code Generation: An Empirical Study
IST'24. Understanding the implementation issues when using deep learning frameworks
JSS'24. Code semantic enrichment for deep code search
ICSE'23. ShellFusion: An Answer Generator for Shell Programming Tasks via Knowledge Fusion
FSE'22. CodeMatcher: A Tool for Large-Scale Code Search Based on Query Semantics Matching
ICSE'22. ShellFusion: Answer Generation for Shell Programming Tasks via Knowledge Fusion
SANER'22. Fine-Grained Co-Attentive Representation Learning for Semantic Code Search
CSUR'21. Opportunities and Challenges in Code Search Tools
TOSEM'21. CodeMatcher: Searching Code Based on Sequential Semantics of Important Query Words
TOSEM'21. On the Reproducibility and Replicability of Deep Learning in Software Engineering
SANER'21. Two-Stage Attention-Based Model for Code Search with Textual and Structural Features
ICPC'20. Improving Code Search with Co-Attentive Representation Learning
TSC'20. Multi-Dimension Convolutional Neural Network for Bug Localization
AAS'20. Non-Gaussian Lagrangian Stochastic Model for Wind Field Simulation in the Surface Layer
IST'19. A Two-Phase Transfer Learning Model for Cross-Project Defect Prediction
More on Google Scholar
审稿服务
TSE, TOSEM, EMSE, ASEJ, IST, JSS, SQJ, NEUCOM, INFFUS, ASE, ACL, APSEC, etc.